PS200電源は、充電式、7 Ahバルブ制御鉛蓄電池(VRLA)と充電レギュレータで構成されています。 このマイクロコントローラベースのスマート・チャージャーは、バッテリの充電を最適化し、バッテリの寿命を延ばす2段階の定電圧充電と温度補償を備えています。 2つの入力端子により、2つの充電ソースを同時に接続できます。 PS200はまた、利用可能なソーラー充電リソースを最大化するソーラー入力用の最大電力点追跡アルゴリズムを組み込んでいます。 RS-232およびSDI-12端子により、PS200は充電パラメータをデータロガーに転送できます。
動作温度 | -40° ~ +60°C (VRLA バッテリの製造元は、「熱はバッテリを破壊する」と述べており、バッテリを 50°C 以下で動作させることを推奨しています。) |
寸法 | 19 x 7.6 x 10.6 cm (7.5 x 3 x 4.2 in.) |
CHARGE - CHARGE 端子 (AC または DC 電源) |
|
AC | 18 ~ 24 VRMS (最大 1.2 ARMS) |
DC | 16 ~ 40 Vdc (最大 1.1 Adc) |
SOLAR 端子 (ソーラーパネルまたはその他の DC 電源) |
|
-注意- | バッテリ電圧が 8.7 V 未満の場合、フォールドバック電流制限により、電流制限が 3.0 A 未満になることがあります。 |
入力電圧範囲 | 15 ~ 40 Vdc |
最大充電電流 | 4.0 Adc (標準) (充電器によって3.2~4.9 ADC) |
静止電流 |
|
充電源なし | 300 μA (最大) |
バッテリ未接続 | 2 mA (最大) |
バッテリ充電 |
|
-注意- | バルブ制御鉛蓄電池用の 2 段階温度補償定電圧充電。サイクルおよびフロート充電電圧パラメータは、記載されているデフォルト値を使用してプログラム可能です。 |
サイクル充電 | Vbatt(T) = 14.70 V - (24 mV) x (T-25°C) |
フロート充電 | Vbatt(T) = 13.65 V - (18 mV) x (T-25°C) |
正確度 | ±1% (充電電圧が-40°~+60°Cを超える場合) |
電源出力(+12端子) |
|
電圧 | バッテリからの非調整 12 V |
4 A 自己リセット可能サーマル ヒューズ ホールド電流制限 |
|
測定 |
|
-注意- | -40° ~ +60°C の場合 |
平均バッテリ電圧 | ±(読み取り値の 1% + 15 mV) |
平均バッテリ/負荷電流レギュレータ入力電圧 |
±(読み取り値の 2% + 2 mA) 電流のインパルス型変化では、平均電流誤差が ±(読み取り値の 10% + 2 mA) になる場合があります。 |
ソーラー |
±(読み取り値の 1% - 0.25 V) / -(読み取り値の 1% + 1 V) 入力の逆流防止ダイオードにより、1.0 V の負のオフセットが最悪のケースになります。通常のダイオード降下は 0.35 V です。 |
連続 |
±(読み取り値の 1% - 0.5 V) / -(読み取り値の 1% + 2 V) AC フルブリッジの 2 つの直列ダイオードにより、2.0 V の負のオフセットが最悪のケースになります。通常のダイオード降下はそれぞれ 0.35 で、合計 0.7 V です。 |
充電器温度 | ± 2°C |
CR1000 programming examples for use with the PS200. The examples show how to use both SDI-12 and RS-232 advanced instruction programming techniques.
Execution of this download installs the CH200 / PS200 Operating System on your computer.
Note: The Device Configuration Utility is used to upload the included operating system to the CH200 / PS200.
PS200に関するよくある質問の数: 8
すべて展開すべて折りたたむ
Battery manufacturers recommend that their batteries be charged at least once every 3 to 6 months. If an extra wall charger is available, such as a 29796, Campbell Scientific recommends keeping it continually connected to ac power.
Yes. A properly designed system with a PS100 or PS200 can keep a CR1000 working continuously during a short power failure. Campbell Scientific recommends, however, conducting a load analysis to determine what duration of power outage can be endured.
The PS100 is a float-only charger that is limited to a 20 W solar panel and a maximum load of approximately 1 A.
The more advanced (and more expensive) PS200 is a multistage controller that can charge at higher rates and use larger solar panels (90 W) while delivering a maximum of approximately 4 A to the load, depending on the temperature. The PS200 is a smart charger that incorporates MPPT (maximum power point tracking) technology and can be interrogated by the data logger to check its state, solar panel status, load currents, battery voltage, and net battery current. In this regard, the PS200 acts as a high-tech sensor, as well as a charge regulator.
The PS100 has a temperature sensor for temperature compensation. The PS200 has a similar onboard temperature sensor, but it is more efficient and does not dissipate as much heat with a similar load. The PS200 also has a feature where an independent battery temperature measurement can be sent to the charger rather than using its onboard temperature sensor.
The CH200 or PS200 will pull power only from the source with the highest voltage at that moment. For example, the regulator will take the 20 W input from the 24 Vdc wall transformer rather than from the 18 V 50 W solar panel—even during the day. If the power goes out, the 50 W solar panel will charge during the day with no charging at night.
Look for a stamp on top of the battery. The stamp may be in a date format of YYMMDDXX where:
This indicates the age of the battery.
The PS100, PS150, and PS200 models take in AC or DC power from a wall transformer or a solar panel. The internal regulator controls the charge to the battery to make sure the battery doesn’t become overcharged (based on temperature).
If the switch is on, the voltage from the battery will flow back out from the regulated battery to the loads; however, the voltage on that battery may be 11.9 V, 13.2 V, or some other value that the battery happens to be at. It is important to understand that the voltage will not always be exactly 12.0 Vdc. Rather, the voltage will float up or down as the battery is recharged or depleted.
The voltage from a solar panel will fluctuate throughout the day.
If AC power is being used, the voltage is usually stable.
The voltages coming into the regulator inputs are controlled so that the battery won’t be overcharged (and thus ruined by boiling out the electrolyte). If the battery connected to the regulator is good, the highest voltage you will likely see is just above 14 Vdc in the extreme cold, but normally it should be around 13.2 Vdc.
If you have a nearly dead battery (to be checked with a voltmeter) or a battery with shorted cells, you will see a very low battery voltage. The lowest voltage you will see on the data logger data is usually about 10.0 V because the data logger will shut down near that level and then wait for the voltage to increase to an 11- or 12-volt level.
The ripple voltage is a few millivolts flowing into the battery, but the battery should filter out most of that noise, providing a pretty stable voltage.
Yes. The G and 12V terminals on the charge regulator are used to connect the black and red wires that connect with the green connector, which provides power to the data logger.
We've updated our privacy policy. 詳細はこちら
Update your cookie preferences. クッキーの設定を更新する