107 温度プローブ
堅牢、正確、多用途
さまざまなアプリケーションに向いています
気象 applications 水 applications エネルギー applications ガスフラックスと乱流 applications インフラ applications 土壌 applications

概要

107は、-35℃ ~+50°Cの空気、土壌、水の温度を測定する堅牢で高精度なプローブです。 ほとんどのCampbell Scientific製のデータロガーと簡単に接続でき、さまざまなアプリケーションに使用できます。 107は、エポキシ樹脂を充填したアルミニウム製ハウジングに収納されたサーミスタで構成されています。 ハウジングはサーミスタを保護するため、プローブを土中に埋めたり、水中に沈めたりすることができます。

利点と特徴

  • 空気、土壌、または水温を測定する多用途製品
  • 取り付けや取り外しが簡単
  • 高耐久
  • AM16/32シリーズマルチプレクサと互換性があり、複数のセンサの測定が可能

イメージ

仕様

センサの説明 BetaTherm 100K6A1IA サーミスタ
許容範囲 ±0.2°C @(0° ~ 50°C)
温度測定範囲 -35° ~ +50°C
使用温度限界範囲 -50° ~ +100°C
Steinhart-Hart 方程式の誤差 測定範囲全体で≤±0.01°C (CRBasic データロガー使用時に限る)
多項式線形化エラー 測定範囲全体で通常±0.5°C未満 (Edlog データロガー使用時に限る)
空気中の時定数 30 ~ 60 秒 (風速5m/s-1の場合)
最大水没 15 m (50 ft)
プローブ直径 0.76 cm (0.3 in.)
プローブの長さ 10.4 cm (4.1 in.)
最大ケーブル長
  • 305 m (1000 フィート) プログラミングの変更は必要ありません。
  • 762 m (2500 フィート) ではプログラミングの変更が必要です。(詳細については、107 マニュアルのセクション 8.4 を参照してください。)
重さ 136 g (5オンス) (3.05 m) 10フィートケーブル付きの場合

互換性

注意: 以下は代表的な互換性情報を示しています。互換性のある製品や互換性のない製品をすべて網羅したリストではありません。

Data Loggers

製品 互換性 注意
CR1000 (リタイア)
CR1000X
CR300
CR3000 (リタイア)
CR310
CR350
CR6
CR800 (リタイア)
CR850 (リタイア)

互換性に関する追加情報

データロガーに関する考慮事項

1つのプローブにつき1つのシングルエンドチャンネルが必要です。

設置に関する考慮事項

気温
太陽光に晒される場合、107 は 41303-5A、41303-5B、または RAD06 6 遮光シールドに収納する必要があります。これらの遮光シールドのルーバー構造により、空気がシールドを自由に通過できるため、センサの温度は周囲温度またはそれに近い温度に保たれます。シールドの白色は太陽放射を反射します。
RAD06 は、激しい雨、雪、昆虫の侵入に対するセンサ保護を強化するダブルルーバー設計を採用しており、明るい太陽光の下では自己発熱が少なく、高温(> 24°C [~75°F])かつ低風速(< 2 m s-1 [~4.5 mph])であっても、より正確な測定が可能です。
41303-5A および RAD06 は、外径が 2.5 ~ 5.3 cm(1.0 ~ 2.1 インチ)のクロスアーム、マスト、またはユーザーが提供するパイプに取り付けられます。
41303-5B は、CM500 シリーズのポールまたは外径 5.1 cm(2.4 インチ)のユーザーが提供するポールに取り付けられます。
土壌温度

107は浅い埋設にのみ適しています。 特に、掘削、草刈り、交通、電動工具の使用、または落雷にさらされる場所では、センサのケーブルを頑丈な電線管内に設置することをお勧めします。

水温

センサは15 m(50フィート)または21 psiまで水没させることができます。 108には重りが付いていないのでご注意ください。その為、加重システムを追加するか、センサーを杭などの固定された水中の物体に固定する必要があります。

マルチプレクサ

多数のプローブを測定する場合には、AM16/32B マルチプレクサをお勧めします。


よくある質問

107に関するよくある質問の数: 10

すべて展開すべて折りたたむ

    • The CS506-L Fuel Moisture Sensor uses a 26601 10-Hour Fuel Moisture Stick.
    • The 107 Temperature Probe uses a CS205 10-Hour Fuel Temperature Stick.

    Both of these dowels can be easily replaced in the field with a Phillips screwdriver and an adjustable wrench.

  1. For descriptions and illustrations (with part numbers) of the various instruments used in measuring fuel temperature and moisture, see the "Remote Measurements" brochure.

  2. Not every sensor has different cable termination options. The options available for a particular sensor can be checked by looking in two places in the Ordering information area of the sensor product page:

    • Model number
    • Cable Termination Options list

    If a sensor is offered in an –ET, –ETM, –LC, –LQ, or –QD version, that option’s availability is reflected in the sensor model number. For example, the 034B is offered as the 034B-ET, 034B-ETM, 034B-LC, 034B-LQ, and 034B-QD.

    All of the other cable termination options, if available, are listed on the Ordering information area of the sensor product page under “Cable Termination Options.” For example, the 034B-L Wind Set is offered with the –CWS, –PT, and –PW options, as shown in the Ordering information area of the 034B-L product page.

    Note: As newer products are added to our inventory, typically, we will list multiple cable termination options under a single sensor model rather than creating multiple model numbers. For example, the HC2S3-L has a –C cable termination option for connecting it to a CS110 instead of offering an HC2S3-LC model. 

  3. Most Campbell Scientific sensors are available as an –L, which indicates a user-specified cable length. If a sensor is listed as an –LX model (where “X” is some other character), that sensor’s cable has a user-specified length, but it terminates with a specific connector for a unique system:

    • An –LC model has a user-specified cable length for connection to an ET107, CS110, or retired Metdata1.
    • An –LQ model has a user-specified cable length for connection to a RAWS-P weather station.

    If a sensor does not have an –L or other –LX designation after the main model number, the sensor has a set cable length. The cable length is listed at the end of the Description field in the product’s Ordering information. For example, the 034B-ET model has a description of “Met One Wind Set for ET Station, 67 inch Cable.” Products with a set cable length terminate, as a default, with pigtails.

    If a cable terminates with a special connector for a unique system, the end of the model number designates which system. For example, the 034B-ET model designates the sensor as a 034B for an ET107 system.

    • –ET models terminate with the connector for an ET107 weather station.
    • –ETM models terminate with the connector for an ET107 weather station, but they also include a special system mounting, which is often convenient when purchasing a replacement part.
    • –QD models terminate with the connector for a RAWS-F Quick Deployment Station.
    • –PW models terminate with the connector for a PWENC or pre-wired system.
  4. The thermistor is located approximately 3 mm (0.125 in.) back from the probe tip.

  5. When these sensors are purchased, the following calibration services are offered: TEMPCAL and TEMPCAL2.

    • TEMPCAL provides a single-point calibration and a calibration certificate. The single-point calibration determines the offset at 25°C with an uncertainty of ±0.05°C.
    • TEMPCAL2 provides a two-point calibration and a calibration certificate. The two-point calibration determines offsets at 30°C and 65°C with an uncertainty of ±0.05°C.

    For both of these services, calibration can be made at different values if it is requested by the purchaser at the time of purchase. In addition, both of these calibration services can be requested after sensor purchase using a return material authorization (RMA) number. To request an RMA number, refer to the Repair and Calibration page. 

  6. The sensor/probe consists of a non-linear thermistor configured with a precision resistor in a half-bridge circuit, as shown in the product’s manual:

    To measure the sensor/probe, the measurement device has to provide a precision excitation voltage (Campbell Scientific data loggers use 2000 mV), measure the voltage across the precision resistor, determine the thermistor resistance (Ohm's law), and convert the resistance to temperature using the Steinhart-Hart equation.

    The Steinhart-Hart equation is 1/T = A + Bln(R) + C(ln(R))3 where:

    • T is the temperature in Kelvin
    • R is the resistance at T in ohms
    • A, B, and C are the Steinhart-Hart coefficients, which vary depending on the temperature range of interest, as well as the type and model of the thermistor

    For the 107-L, 107-LC, 108-L, and 108-LC, the following are the coefficients for the Steinhart-Hart equation:

    • A = 8.271111E-4
    • B = 2.088020E-4
    • C = 8.059200E-8

    For the 109-L, the following are the coefficients for the Steinhart-Hart equation:

    • A = 1.129241E-3
    • B = 2.341077E-4
    • C = 8.775468E-8
  7. Note the difference between calibration and a field check. Calibration cannot be done in the field, as it requires an experienced technician and specialized equipment.

    Field checks of measurements can be done to determine if the data make sense with the real-world conditions. Follow these steps to field check a sensor:

    1. Find a second sensor of the same type as the installed sensor whose data is in question. The second sensor will be used as a benchmark sensor and should be known to be accurate or recently calibrated.
    2. At the site, take readings using both sensors under the same conditions. The best practice is to measure both sensors side-by-side at the same time. Note that the sensors will never have the exact same measurement.
    3. Depending on the sensor model, if the difference in the readings of the installed and benchmark sensors is greater than the sum of the accuracies for both sensors, either return the installed sensor to Campbell Scientific for calibration or replace the appropriate chip.
      • The 107, 108, 109, 110PV-L, and BlackGlobe-L temperature sensors can be calibrated.
      • The HC2S3-L and HMP155A-L temperature and relative humidity sensors can be calibrated.
      • The CS215-L has a replaceable chip for temperature and relative humidity. For more information, refer to the “Maintenance and Calibration” section of the CS215 instruction manual.
      • The HMP60-L has a replaceable chip for relative humidity only. For more information, refer to the “Maintenance” section of the HMP60 instruction manual.
  8. Many Campbell Scientific sensors are available with different cable termination options. These options include the following:

    • The –PT (–PT w/Tinned Wires) option is the default option and does not display on the product line as the other options do. The cable terminates in pigtails that connect directly to a data logger.
    • In the –C (–C w/ET/CS110 Connector) option, the cable terminates in a connector that attaches to a CS110 Electric Field Meter or an ET-series weather station.
    • In the –CWS (–CWS w/CWS900 Connector) option, the cable terminates in a connector that attaches to a CWS900-series interface. Connection to a CWS900-series interface allows the sensor to be used in a wireless sensor network.
    • In the –PW (–PW w/Pre-Wire Connector) option, the cable terminates in a connector that attaches to a prewired enclosure.
    • In the –RQ (–RQ w/RAWS Connector) option, the cable terminates in a connector that attaches to a RAWS-P Permanent Remote Automated Weather Station.

    Note: The availability of cable termination options varies by sensor. For example, sensors may have none, two, or several options to choose from. If a desired option is not listed for a specific sensor, contact Campbell Scientific for assistance.

  9. Both the 26601 10-Hour Fuel Moisture Stick (used with the CS506-L) and the CS205 10-Hour Fuel Temperature Stick (used with the 107-L) can be easily replaced in the field with a Phillips screwdriver and an adjustable wrench.

    The dowels should be replaced each spring; more frequent replacements may be required in some environments. The more wet/dry cycles the dowels experience, the more frequently they will need to be replaced.

ケーススタディ

Zimbabwe: Enhancing Climate Resilience
Overview As part of the United Nations Development Programme's (UNDP) Climate Adaptation Water and Energy Programme......続きを読む
New Mexico: Cavern Collapse Alarm
RESPEC, a water-resources consulting and services firm, is currently under contract to operate and maintain......続きを読む
Washington: AgWeatherNet
Washington State University’s AgWeatherNet (AWN) is a large automated network composed almost entirely of Campbell......続きを読む
Delaware: Environmental Observing System
The Delaware Environmental Observing System (DEOS) is a real-time system dedicated to monitoring environmental conditions......続きを読む
West Texas Mesonet
The West Texas Mesonet (WTM) project was initiated by Texas Tech University in 1999 to......続きを読む
New Zealand: Coal Mine Water Quality Monitoring
High-grade coal has been mined on the West Coast of New Zealand since the 1870s.......続きを読む
New Hampshire: Mount Washington Observatory
The Mount Washington Observatory in New Hampshire is one of the oldest weather observatories in......続きを読む
Montana: Acid Rock Drainage Monitoring
Acid Rock Drainage (ARD) problems associated with hard rock metal mining are one of the......続きを読む

下記の製品は置き換えられました

Privacy Policy Update

We've updated our privacy policy.  詳細はこちら

Cookie Consent

Update your cookie preferences.  クッキーの設定を更新する